Score-Based Bayesian Skill Learning
نویسندگان
چکیده
We extend the Bayesian skill rating system of TrueSkill to accommodate score-based match outcomes. TrueSkill has proven to be a very effective algorithm for matchmaking — the process of pairing competitors based on similar skill-level — in competitive online gaming. However, for the case of two teams/players, TrueSkill only learns from win, lose, or draw outcomes and cannot use additional match outcome information such as scores. To address this deficiency, we propose novel Bayesian graphical models as extensions of TrueSkill that (1) model player’s offence and defence skills separately and (2) model how these offence and defence skills interact to generate score-based match outcomes. We derive efficient (approximate) Bayesian inference methods for inferring latent skills in these new models and evaluate them on three real data sets including Halo 2 XBox Live matches. Empirical evaluations demonstrate that the new score-based models (a) provide more accurate win/loss probability estimates than TrueSkill when training data is limited, (b) provide competitive and often better win/loss classification performance than TrueSkill, and (c) provide reasonable score outcome predictions with an appropriate choice of likelihood — prediction for which TrueSkill was not designed, but which can be useful in many applications.
منابع مشابه
Learning Bayesian Network Structure from Heterogeneous Data
There has been some work on learning bayesian network structure from data. In this paper, there is an investigation of search and score methods for assessing the factors that contribute to greater skill in intelligent games such as chess and go. I will discuss different search strategies and compare their efficiencies. There will also be a discussion on speeding up bayesian network structure
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملLearning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis
‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...
متن کاملBayesian Recommender Systems: Models and Algorithms
This thesis is about how Bayesian methods can be applied to explicitly model and efficiently reason about uncertainty to make optimal recommendations. We are interested in three dimensions of recommender systems: (1) preference elicitation, (2) set-based recommendations, and (3) matchmaking. The first dimension concerns how one can minimize the elicitation efforts in learning a user’s utility f...
متن کامل